Add like
Add dislike
Add to saved papers

Ion Mobility-Mass Spectrometry Reveals Evidence of Specific Complex Formation between Human Histone Deacetylase 8 and Poly-r(C)-binding Protein 1.

Histone deacetylase 8, part of a broad class of proteins responsible for regulating transcription and many other cellular processes and directly linked to a host of human disease through its mis-function, has been canonically described as a zinc-based mettalo-enzyme for many years. Recent evidence, however, has linked this protein to iron incorporation, loaded through transient interactions with the poly r(C)-binding protein 1, a metallo-chaperone and storage protein. In this report, we construct and deploy an electrospray-mass spectrometry based assay aimed at quantifying the interaction strength between these two weakly-associated proteins, as well as the zinc and iron associated form of the histone deacetylase. Despite challenges derived from artifact protein complexes derived from the electrospray process, we use carefully-constructed positive and negative control experiments, along with detailed measurements of protein ionization efficiency to validate our dissociation constant measurements for protein dimers in this size range. Furthermore, our data strongly support that complexes between histone deacetylase 8 and poly r(C)-binding protein 1 are specific, and that they are equally strong when both zinc and iron-loaded proteins are involved, or perhaps mildly promoted in the latter case, suggesting an in vivo role for the non-canonical, iron-incorporated histone deacetylase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app