Add like
Add dislike
Add to saved papers

Chlorinated emodin as a natural antibacterial agent against drug-resistant bacteria through dual influence on bacterial cell membranes and DNA.

Scientific Reports 2017 October 6
The rise in infections caused by drug-resistant pathogens and a lack of effective medicines requires the discovery of new antibacterial agents. Naturally chlorinated emodin 1,3,8-trihydroxy-4-chloro-6-methyl-anthraquinone (CE) from fungi and lichens was found to markedly inhibit the growth of Gram-positive bacteria, especially common drug-resistant bacterial strains, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE). CE was confirmed to cause significant potassium leakage, cell membrane depolarization and damage to the selective permeability of cell membranes in bacterial cells, resulting in bacterial cell death. In addition, CE was shown to have a strong electrostatic interaction with bacterial DNA and induce DNA condensation. Thus, CE is a promising natural antibacterial pharmacophore against Gram-positive bacteria, especially common drug-resistant MRSA and VRE isolates, with a dual antibacterial mechanism that damages bacterial cell membranes and DNA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app