Add like
Add dislike
Add to saved papers

Interkinetic nuclear migration and basal tethering facilitates post-mitotic daughter separation in intestinal organoids.

Journal of Cell Science 2017 November 16
Homeostasis of renewing tissues requires balanced proliferation, differentiation and movement. This is particularly important in the intestinal epithelium where lineage tracing suggests that stochastic differentiation choices are intricately coupled to the position of a cell relative to a niche. To determine how position is achieved, we followed proliferating cells in intestinal organoids and discovered that the behaviour of mitotic sisters predicted long-term positioning. We found that, normally, 70% of sisters remain neighbours, while 30% lose contact and separate after cytokinesis. These post-mitotic placements predict longer term differences in positions assumed by sisters: adjacent sisters reach similar positions over time; in a pair of separating sisters, one remains close to its birthplace while the other is displaced upward. Computationally modelling crypt dynamics confirmed that post-mitotic separation leads to sisters reaching different compartments. We show that interkinetic nuclear migration, cell size and asymmetric tethering by a process extending from the basal side of cells contribute to separations. These processes are altered in adenomatous polyposis coli ( Apc ) mutant epithelia where separation is lost. We conclude that post-mitotic placement contributes to stochastic niche exit and, when defective, supports the clonal expansion of Apc mutant cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app