Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Early neonatal loss of inhibitory synaptic input to the spinal motor neurons confers spina bifida-like leg dysfunction in a chicken model.

Spina bifida aperta (SBA), one of the most common congenital malformations, causes lifelong neurological complications, particularly in terms of motor dysfunction. Fetuses with SBA exhibit voluntary leg movements in utero and during early neonatal life, but these disappear within the first few weeks after birth. However, the pathophysiological sequence underlying such motor dysfunction remains unclear. Additionally, because important insights have yet to be obtained from human cases, an appropriate animal model is essential. Here, we investigated the neuropathological mechanisms of progression of SBA-like motor dysfunctions in a neural tube surgery-induced chicken model of SBA at different pathogenesis points ranging from embryonic to posthatch ages. We found that chicks with SBA-like features lose voluntary leg movements and subsequently exhibit lower-limb paralysis within the first 2 weeks after hatching, coinciding with the synaptic change-induced disruption of spinal motor networks at the site of the SBA lesion in the lumbosacral region. Such synaptic changes reduced the ratio of inhibitory-to-excitatory inputs to motor neurons and were associated with a drastic loss of γ-aminobutyric acid (GABA)ergic inputs and upregulation of the cholinergic activities of motor neurons. Furthermore, most of the neurons in ventral horns, which appeared to be suffering from excitotoxicity during the early postnatal days, underwent apoptosis. However, the triggers of cellular abnormalization and neurodegenerative signaling were evident in the middle- to late-gestational stages, probably attributable to the amniotic fluid-induced in ovo milieu. In conclusion, we found that early neonatal loss of neurons in the ventral horn of exposed spinal cord affords novel insights into the pathophysiology of SBA-like leg dysfunction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app