Add like
Add dislike
Add to saved papers

Methyleugenol protects against t-BHP-triggered oxidative injury by induction of Nrf2 dependent on AMPK/GSK3β and ERK activation.

Methyleugenol (Mlg), a natural ingredient of many herbs and used as a flavoring substance in dietary products, inhibits inflammation and oxidative stress. The aim of the study is to explore the antioxidative potential of Mlg against tert-butyl hydroperoxide (t-BHP)-triggered oxidative injury and the involvement of antioxidative mechanisms. Our findings indicated that Mlg exposure significantly alleviated t-BHP-stimulated cytotoxicity, suppressed reactive oxygen species (ROS) generation, and increased superoxide dismutase (SOD) and glutathione (GSH) levels, which were related to the induction of the glutamate-cysteine ligase catalytic/modifier (GCLC/GCLM) subunit, heme oxygenase-1 (HO-1), and NAD (P) H: quinone oxidoreductase (NQO1) largely dependent upon upregulating the nuclear factor-erythroid 2-related factor 2 (Nrf2) induction, inhibiting the Keap1 protein expression, and heightening the antioxidant response element (ARE) activity. Additionally, Mlg exposure obviously induced AMP-activated protein kinase (AMPK), glycogen synthase kinase 3β (GSK3β) and extracellular signal-regulated kinase (ERK) phosphorylation, but AMPK and ERK inhibitors treatment exhibited effectively reduced levels of Mlg-enhanced Nrf2 nuclear translocation, respectively. Furthermore, Mlg exposure significantly lessened t-BHP-induced cytotoxicity and ROS production which were evidently abolished by treatment with AMPK and ERK inhibitors and Nrf2 siRNA. Accordingly, Mlg might exhibit a protective role against t-BHP-triggered cytotoxicity via the activation of the AMPK/GSK3β- and ERK-Nrf2 signaling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app