Add like
Add dislike
Add to saved papers

A Computational Scheme To Evaluate Hamaker Constants of Molecules with Practical Size and Anisotropy.

We propose a computational scheme to evaluate Hamaker constants, A, of molecules with practical sizes and anisotropies. Upon the increasing feasibility of diffusion Monte Carlo (DMC) methods to evaluate binding curves for such molecules to extract the constants, we discussed how to treat the averaging over anisotropy and how to correct the bias due to the nonadditivity. We have developed a computational procedure for dealing with the anisotropy and reducing statistical errors and biases in DMC evaluations, based on possible validations on predicted A. We applied the scheme to cyclohexasilane molecule, Si6 H12 , used in "printed electronics" fabrications, getting A ≈ 105 ± 2 zJ, being in plausible range supported even by other possible extrapolations. The scheme provided here would open a way to use handy ab initio evaluations to predict wettabilities as in the form of materials informatics over broader molecules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app