Add like
Add dislike
Add to saved papers

Formation of persisters in Streptococcus mutans biofilms induced by antibacterial dental monomer.

Antibacterial monomers can combat oral biofilm acids and caries; however, little is known on whether quaternary ammonium monomers (QAMs) would induce drug persistence in oral bacteria. The objectives of this study were to investigate the interactions of Streptococcus mutans (S. mutans) with dimethylaminohexadecyl methacrylate (DMAHDM), and determine for the first time whether DMAHDM could induce persisters in S. mutans. DMAHDM was synthesized using a modified Menschutkin reaction. Dose-dependent killing curves and time-dependent killing curves of planktonic S. mutans and biofilms were determined to evaluate drug persistence, using chlorhexidine (CHX) as control. The inheritability assay, minimum inhibitory concentration (MIC) and live/dead biofilm assay were determined to investigate persister characteristics. DMAHDM matched the killing potency of the gold standard CHX against S. mutans biofilms. DMAHDM and CHX induced drug persistence in S. mutans biofilms but not in planktonic bacteria. S. mutans biofilm persistence was not inheritable in that the tolerance to DMAHDM or CHX of the surviving persisters in the initial population was not transferred to subsequent generations, as displayed by the inheritability assay. The MIC of S. mutans parental strain and induced persisters remained the same. The induced persisters in S. mutans biofilms could be eliminated via higher doses of 300 μg/mL of DMAHDM and CHX. In conclusion, this study showed for the first time that (1) DMAHDM induced persisters only in biofilms, but not in planktonic bacteria; and (2) both DMAHDM-induced and CHX-induced S. mutans persister biofilms could be completely eradicated by even higher concentrations of DMAHDM and CHX. More studies are needed on the induction of persisters in oral biofilms for the development and use of a new generation of antibacterial dental monomers and resins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app