Add like
Add dislike
Add to saved papers

Translocation of heme oxygenase-1 contributes to imatinib resistance in chronic myelogenous leukemia.

Oncotarget 2017 September 16
Heme oxygenase-1 (HO-1) degrades heme to bilirubin. In addition, it is upregulated in malignant disease and has been described as an important factor for cancer prognosis and therapy. Under physiological conditions HO-1 is anchored to the endoplasmic reticulum (ER). Under stress conditions HO-1 can be cleaved and subsequently translocates to the cytosol and nucleus. In this study we systematically investigated the influence of HO-1's catabolic activity and subcellular localization on resistance against the tyrosine kinase inhibitor imatinib in leukemia cells by confocal laser scanning microscopy, hemoglobin synthesis experiments and cell viability assays. We created two types of monoclonal K562 cell lines stably transfected with GFP-tagged HO-1: cell lines expressing ER anchored HO-1 or anchorless HO-1. Since translocation of HO-1 disrupts the association with cytochrome P450 reductase, heme degrading activity was higher for ER anchored versus anchorless HO-1. Cell viability tests with increasing concentrations of imatinib showed IC50-values for all six cell lines with ER localized HO-1 that were similar to control cells. However, out of the seven cell lines with anchorless HO-1, two showed a statistically significant increase in the imatinib IC50 (19.76 μM and 12.35 μM versus 2.35 - 7.57 μM of sensitive cell lines) corresponding to plasma concentrations outside the therapeutic range. We conclude that the presence of translocated HO-1 in the cytosol and nucleus supports imatinib resistance while it is not sufficient to cause imatinib resistance in every cell line. In contrast, an increase in ER anchored HO-1 with high heme degrading activity does not contribute to imatinib resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app