Add like
Add dislike
Add to saved papers

Mitochondrial mRNA transcripts predict overall survival, tumor recurrence and progression in serous ovarian cancer: Companion diagnostics for cancer therapy.

Oncotarget 2017 September 16
Here, we performed a systematic analysis to discover new biomarkers of overall survival and tumor progression in ovarian cancer patients. More specifically, we determined whether nuclear-encoded mitochondrial genes related to mitochondrial biogenesis and function are effective in predicting clinical outcome in ovarian cancer. As a consequence, we are able to provide in silico validation of the prognostic value of these mitochondrial markers, in a well-defined population of ovarian cancer patients. Towards this end, we used a group of N=111 ovarian cancer patients (serous type; stage III), with optimal de-bulking. Importantly, in this group of cancer patients, CA125 and PCNA (conventional markers) were associated with poor overall survival, as would be expected. Using this approach, we identified >100 new individual mitochondrial gene probes that effectively predicted significantly reduced overall survival, with hazard-ratios (HR) of up to 3.68 (p < 9.8e-05). These mitochondrial mRNA transcripts included membrane proteins, chaperones, anti-oxidant enzymes, as well as mitochondrial ribosomal proteins (MRPs) and key members of the OXPHOS (I-V) complexes. Based on this bioinformatics analysis and in silico validation, we conclude that mitochondrial biogenesis and OXPHOS should both be considered as new therapeutic targets, for the more effective treatment of human ovarian cancers. The mitochondrial biomarkers that we have identified could also be employed as new companion diagnostics to assist oncologists in: i) more accurately predicting clinical outcomes and ii) improving the response to therapy, in ovarian cancer patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app