Add like
Add dislike
Add to saved papers

Efficacy of Stannous Ions on Enamel Demineralization under Normal and Hyposalivatory Conditions: A Controlled Randomized in situ Pilot Trial.

Caries Research 2017 January 6
The study aim was to investigate the effect of antierosive agents on enamel under normal and hyposalivatory conditions. This double-blind crossover in situ pilot study evaluated 4 toothpastes: placebo (0 ppm F), sodium fluoride (NaF, 1,450 ppm), stannous/sodium fluoride (SnF/NaF, 1,450 ppm F-, 1,090 ppm Sn2+), and sodium fluoride, stannous chloride and chitosan (NaF/Sn/Ch, 1,450 ppm F-, 3,500 ppm Sn2+, 0.5% Ch). Twenty participants were assigned to 2 groups (n = 10 each): normal and low salivary flow. Participants wore palatal appliances holding 4 bovine enamel specimens previously eroded in vitro (D1) for 20 min prior to an in situ phase after which they were eroded again (D2). Surface microhardness was determined at baseline (BL), after D1, in situ phase and D2 to assess hardness loss (%SMH), residual hardness loss (%RHL) and erosion resistance (%RER). Additional specimens were evaluated by scanning electron microscopy after the in situ phase. ANOVA and a factorial analysis for between-subject effects were performed. Sn-based toothpastes showed the best effects (p < 0.05). Under normal flow, SnF/NaF showed higher efficacy, with a significant difference compared to NaF/Sn/Ch, NaF, and placebo (p < 0.05). Under low flow, SnF/NaF and NaF/Sn/Ch were comparable (p > 0.05); NaF and placebo were statistically similar. Comparing salivary conditions, there were significant differences for SnF/NaF for %SMH after the in situ phase (%SMHtotal)), %RHL and for all toothpastes in case of %RER. Factorial analysis revealed interactions between toothpaste and saliva flow for %SMHtotal and %RHL. Salivary flow can influence the efficacy of the antierosive toothpastes; however, Sn2+ preparations show even under low salivary flow conditions the highest efficacy in the prevention of enamel erosion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app