Add like
Add dislike
Add to saved papers

In-loop flow [ 11 C]CO 2 fixation and radiosynthesis of N,N'-[ 11 C]dibenzylurea.

Cyclotron-produced carbon-11 is a highly valuable radionuclide for the production of positron emission tomography (PET) radiotracers. It is typically produced as relatively unreactive carbon-11 carbon dioxide ([11 C]CO2 ), which is most commonly converted into a more reactive precursor for synthesis of PET radiotracers. The development of [11 C]CO2 fixation methods has more recently enabled the direct radiolabelling of a diverse array of structures directly from [11 C]CO2 , and the advantages afforded by the use of a loop-based system used in 11 C-methylation and 11 C-carboxylation reactions inspired us to apply the [11 C]CO2 fixation "in-loop." In this work, we developed and investigated a new ethylene tetrafluoroethylene (ETFE) loop-based [11 C]CO2 fixation method, enabling the fast and efficient, direct-from-cyclotron, in-loop trapping of [11 C]CO2 using mixed DBU/amine solutions. An optimised protocol was integrated into a proof-of-concept in-loop flow radiosynthesis of N,N'-[11 C]dibenzylurea. This reaction exhibited an average 78% trapping efficiency and a crude radiochemical purity of 83% (determined by radio-HPLC), giving an overall nonisolated radiochemical yield of 72% (decay-corrected) within just 3 minutes from end of bombardment. This proof-of-concept reaction has demonstrated that efficient [11 C]CO2 fixation can be achieved in a low-volume (150 μL) ETFE loop and that this can be easily integrated into a rapid in-loop flow radiosynthesis of carbon-11-labelled products. This new in-loop methodology will allow fast radiolabelling reactions to be performed using cheap/disposable ETFE tubing setup (ideal for good manufacturing practice production) thereby contributing to the widespread usage of [11 C]CO2 trapping/fixation reactions for the production of PET radiotracers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app