Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

ALK2/ALK3-BMPR2/ACVR2A Mediate BMP2-Induced Downregulation of Pentraxin 3 Expression in Human Granulosa-Lutein Cells.

Endocrinology 2017 October 2
Bone morphogenetic protein 2 (BMP2) belongs to the transforming growth factor-β superfamily and plays a critical role in regulating ovarian follicle function. Currently, the role of BMP2 during cumulus expansion remains to be determined. The aim of this study was to investigate the effect of BMP2 on the regulation of pentraxin 3 (PTX3) expression (the major component of cumulus expansion) and the underlying mechanisms in human granulosa-lutein (hGL) cells. Both primary and immortalized hGL cells were used as research models. Our results showed that treatment with BMP2 significantly suppressed the basal and luteinizing hormone-induced upregulation of PTX3. In addition, BMP2 stimulated the phosphorylation of SMAD1/5/8, and this effect was abolished by the addition of BMP type I receptor inhibitors, dorsomorphin homolog 1, and dorsomorphin but not SB431542. Moreover, the knockdown of activin receptorlike kinase 2/3 or BMP receptor type II/activin receptor type IIB receptors completely reversed the BMP2-induced phosphorylation of SMAD1/5/8 and restored PTX3 expression. Similarly, the knockdown of SMAD4 completely reversed the suppressive effect of BMP2 on the expression of PTX3. These results improve our understanding of the molecular mechanisms of BMP2 signaling. Our findings suggest that BMP2 may be involved in the regulation of cumulus expansion during the periovulatory stage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app