JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Observation of Single Molecule Plasmon-Driven Electron Transfer in Isotopically Edited 4,4'-Bipyridine Gold Nanosphere Oligomers.

We clarify mechanistic questions regarding plasmon-driven chemistry and nanoscale photocatalysis within optically confined near-field plasmonic systems. Using surface-enhanced Raman scattering (SERS), we directly monitor the photoinduced reaction dynamics of 4,4'-bipyridine molecules, localized in plasmonic hot spots within individual gold nanosphere oligomers. Our experiment generates surface electrons from the gold nanoparticle using an intense off-molecular resonance continuous wave pump field, and detects radical anion products via SERS. This is done by adopting a dual-wavelength spectroscopic approach. Empirical evidence of plasmon-driven electron transfer is provided for the first time by direct detection of the 4,4'-bipyridine radical anion species localized in the plasmonic hot spots of individual gold nanosphere oligomers, corroborated by open-shell density functional theory calculations. An isotopologue approach using both protonated and deuterated 4,4'-bipyridine molecules demonstrates the single molecule response of plasmon-driven electron transfer occurring in single nanosphere oligomer systems with a 3% yield, a phenomenon unobserved in ensemble measurements under analogous experimental conditions. This mechanism has broad applicability to using nanoscale chemical reactors for surface redox reactions on the subnanometer scale.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app