Add like
Add dislike
Add to saved papers

Therapeutic effects of a novel siRNA-based anti-VEGF (siVEGF) nanoball for the treatment of choroidal neovascularization.

Nanoscale 2017 October 20
Age-related macular degeneration (AMD) is the leading cause of blindness in developed countries and is characterized by the development of choroidal neovascularization (CNV). Therapies for AMD have focused on suppressing angiogenic factors, such as vascular endothelial growth factor (VEGF), mainly via conventional anti-VEGF antibody agents. However, additional efforts have been made to develop effective small-interfering RNA (siRNA)-based intracellular therapeutic agents. In this study, we have manufactured a novel siRNA-based anti-VEGF nanoball (siVEGF NB). The siVEGF NB was composed of a siRNA hydrogel with a core of anti-VEGF sequence siRNA coated with branched PEI (bPEI) and hyaluronic acid (HA) in order by applying an electrical force. The novel siVEGF NBs, which were employed in a laser-induced CNV mouse model, were optimized as a retinal and choroidal delivery system through the vitreous humor to the sub-retinal space via CD44 receptor endocytosis on the inner limiting membrane, and showed therapeutic effects via pathways bypassing the TLR3-induced siRNA-class effect. The therapeutic effects of siVEGF NBs lasted for 2 weeks after intravitreal injection showing high targeting efficiency to the sub-retinal space. Thus, the newly developed siVEGF NB may have great potential for the delivery of RNAi-based therapeutics for ocular diseases, including AMD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app