Add like
Add dislike
Add to saved papers

Creating hierarchical porosity hydroxyapatite scaffolds with osteoinduction by three-dimensional printing and microwave sintering.

Biofabrication 2017 November 15
Hierarchical porosity, which includes micropores and macropores in scaffolds, contributes to important multiple biological functions for tissue regeneration. This paper introduces a two-step method of combining three-dimensional printing (3DP) and microwave sintering to fabricate two-level hierarchical porous scaffolds. The results showed that 3D printing made the macroporous structure well-controlled and microwave sintering generated micropores on the macropore surface. The resulting hierarchical macro/microporous hydroxyapatite scaffold induced bone formation following intramuscular implantation. Moreover, when comparing the hierarchical macro/microporous hydroxyapatite scaffold to the non-osteoinductive hydroxyapatite scaffolds (either 3D printed or H2 O2 foamed) subjected to muffle sintering which do not have micropores, the critical role of micropores in material-driven bone formation was shown. The findings presented herein could be useful for the further optimization of bone grafting materials for bone regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app