Add like
Add dislike
Add to saved papers

Object Segmentation Ensuring Consistency Across Multi-Viewpoint Images.

We present a hybrid approach that segments an object by using both color and depth information obtained from views captured from a low-cost RGBD camera and sparsely-located color cameras. Our system begins with generating dense depth information of each target image by using Structure from Motion and Joint Bilateral Upsampling. We formulate the multi-view object segmentation as the Markov Random Field energy optimization on the graph constructed from the superpixels. To ensure inter-view consistency of the segmentation results between color images that have too few color features, our local mapping method generates dense inter-view geometric correspondences by using the dense depth images. Finally, the pixel-based optimization step refines the boundaries of the results obtained from the superpixel-based binary segmentation. We evaluate the validity of our method under various capture conditions such as numbers of views, rotations, and distances between cameras. We compared our method with the state-of-the-art methods that use the standard multi-view datasets. The comparison verified that the proposed method works very efficiently especially in a sparse wide-baseline capture environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app