Add like
Add dislike
Add to saved papers

High-Performance Single-Active-Layer Memristor Based on an Ultrananocrystalline Oxygen-Deficient TiO x Film.

The theoretical and practical realization of memristive devices has been hailed as the next step for nonvolatile memories, low-power remote sensing, and adaptive intelligent prototypes for neuromorphic and biological systems. However, the active materials of currently available memristors need to undergo an often destructive high-bias electroforming process in order to activate resistive switching. This limits their device performance in switching speed, endurance/retention, and power consumption upon high-density integration, due to excessive Joule heating. By employing a nanocrystalline oxygen-deficient TiOx switching matrix to localize the electric field at discrete locations, it is possible to resolve the Joule heating problem by reducing the need for electroforming at high bias. With a Pt/TiOx /Pt stacking architecture, our device follows an electric field driven, vacancy-modulated interface-type switching that is sensitive to the junction size. By scaling down the junction size, the SET voltage and output current can be reduced, and a SET voltage as low as +0.59 V can be obtained for a 5 × 5 μm2 junction size. Along with its potentially fast switching (over 105 cycles with a 100 μs voltage pulse) and high retention (over 105 s) performance, memristors based on these disordered oxygen-deficient TiOx films promise viable building blocks for next-generation nonvolatile memories and other logic circuit systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app