JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Glycosylated Chromogranin A: Potential Role in the Pathogenesis of Heart Failure.

PURPOSE OF REVIEW: Endocrine and paracrine factors influence the cardiovascular system and the heart by a number of different mechanisms. The chromogranin-secretogranin (granin) proteins seem to represent a new family of proteins that exerts both direct and indirect effects on cardiac and vascular functions. The granin proteins are produced in multiple tissues, including cardiac cells, and circulating granin protein concentrations provide incremental prognostic information to established risk indices in patients with myocardial dysfunction. In this review, we provide recent data for the granin proteins in relation with cardiovascular disease, and with a special focus on chromogranin A and heart failure.

RECENT FINDINGS: Chromogranin A is the most studied member of the granin protein family, and shorter, functionally active peptide fragments of chromogranin A exert protective effects on myocardial cell death, ischemia-reperfusion injury, and cardiomyocyte Ca2+ handling. Granin peptides have also been found to induce angiogenesis and vasculogenesis. Protein glycosylation is an important post-translational regulatory mechanism, and we recently found chromogranin A molecules to be hyperglycosylated in the failing myocardium. Chromogranin A hyperglycosylation impaired processing of full-length chromogranin A molecules into physiologically active chromogranin A peptides, and patients with acute heart failure and low rate of chromogranin A processing had increased mortality compared to other acute heart failure patients. Other studies have also demonstrated that circulating granin protein concentrations increase in parallel with heart failure disease stage. The granin protein family seems to influence heart failure pathophysiology, and chromogranin A hyperglycosylation could directly be implicated in heart failure disease progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app