Add like
Add dislike
Add to saved papers

Patient-derived hiPSC neurons with heterozygous CNTNAP2 deletions display altered neuronal gene expression and network activity.

Variants in CNTNAP2 , a member of the neurexin family of genes that function as cell adhesion molecules, have been associated with multiple neuropsychiatric conditions such as schizophrenia, autism spectrum disorder and intellectual disability; animal studies indicate a role for CNTNAP2 in axon guidance, dendritic arborization and synaptogenesis. We previously reprogrammed fibroblasts from a family trio consisting of two carriers of heterozygous intragenic CNTNAP2 deletions into human induced pluripotent stem cells (hiPSCs) and described decreased migration in the neural progenitor cells (NPCs) differentiated from the affected CNTNAP2 carrier in this trio. Here, we report the effect of this heterozygous intragenic deletion in CNTNAP2 on global gene expression and neuronal activity in the same cohort. Our findings suggest that heterozygous CNTNAP2 deletions affect genes involved in neuronal development and neuronal activity; however, these data reflect only one family trio and therefore more deletion carriers, with a variety of genetic backgrounds, will be needed to understand the molecular mechanisms underlying CNTNAP2 deletions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app