Add like
Add dislike
Add to saved papers

Stability of astaxanthin-loaded nanostructured lipid carriers as affected by pH, ionic strength, heat treatment, simulated gastric juice and freeze-thawing.

Nanostructured lipid carriers (NLCs) offer many potential benefits for incorporating lipophilic molecules into clear/opaque food systems. In this study, the influence of pH, ionic strength, thermal treatment, simulated gastric juice (SGJ), and freeze-thawing on the stability of astaxanthin-loaded NLCs (Ax-NLCs) was examined. Ax-NLCs (containing α-tocopherol and ethylenediaminetetraacetic acid as antioxidants) were stabilized with Tween 80 and lecithin (Z-average size: 94 nm), and studied for the above mentioned purpose. The size of Ax-NLCs increased at low pH values (≤5), high NaCl concentrations (≥50 mM), and slightly at SGJ, mainly because of decreasing the ζ-potential. Moreover, thermal treatment at 80/90 °C led to an increase in Ax-NLCs size. Glycerol was found as an appropriate cryoprotectant for preventing aggregation of Ax-NLCs during freeze-thawing. pH, ionic strength, heat and SGJ had no drastic effects on the chemical stability of astaxanthin in NLCs. These results have valuable implications for the utilization of food-grade NLCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app