Add like
Add dislike
Add to saved papers

NUMBL Interacts with TAK1, TRAF6 and NEMO to Negatively Regulate NF-κB Signaling During Osteoclastogenesis.

Scientific Reports 2017 October 4
NF-κB signaling is essential for osteoclast differentiation and skeletal homeostasis. We have reported recently that NUMB-like (NUMBL) protein modulates osteoclastogenesis by down regulating NF-κB activation. Herein, we decipher the mechanism underlying this phenomenon. We found that whereas NUMBL mRNA expression decreases upon stimulation of wild type (WT) bone marrow macrophages (BMMs) with RANKL, TAK1 deficiency in these cells leads to increased NUMBL and decreased TRAF6 and NEMO expression. These changes were restored upon WT-TAK1 expression, but not with catalytically inactive TAK1-K63W, suggesting that TAK1 enzymatic activity is required for these events. Forced expression of NUMBL inhibits osteoclast differentiation and function as evident by reduction in all hallmarks of osteoclastogenesis. Conversely, NUMBL-null BMMs, show increased osteoclast differentiation and mRNA expression of osteoclast marker genes. Post-translationally, K48-linked poly-ubiquitination of NUMBL is diminished in TAK1-null BMMs compared to elevated K48-poly-ubiquitination in WT cells, indicating increased stability of NUMBL in TAK1-null conditions. Further, our studies show that NUMBL directly interacts with TRAF6 and NEMO, and induces their K48-poly-ubiquitination mediated proteasomal degradation. Collectively, our data suggest that NUMBL and TAK1 are reciprocally regulated and that NUMBL acts as an endogenous regulator of NF-κB signaling and osteoclastogenesis by targeting the TAK1-TRAF6-NEMO axis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app