Add like
Add dislike
Add to saved papers

Mucin dispersions as a model for the oromucosal mucus layer in in vitro and ex vivo buccal permeability studies of small molecules.

The mucus layer is believed to play a part in drug permeation across the oral mucosa. Human freeze-dried saliva (HFDS) and porcine gastric mucin (PGM) was evaluated as model for mucus layer per se or in conjunction with in vitro and ex vivo buccal permeability models. Four small molecules (nicotine, mannitol, propranolol, caffeine) showed decreased permeability across mucin dispersions, compared to controls, and a greater effect was seen with HFDS than with PGM. Permeability of propranolol and caffeine across filter-grown TR146 cells was decreased by the presence of mucin, whereas no effect was found on nicotine and mannitol. Incubation of porcine buccal mucosa with mucin dispersions for 24 h compromised the integrity of the tissue, whereas 30 min incubation did not affect tissue integrity. Tissue incubation with mucin dispersions did not decrease nicotine permeability. For the studied model drugs, it is concluded that mucin dispersions constitute a minor barrier for drug diffusion compared to the epithelium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app