Journal Article
Review
Add like
Add dislike
Add to saved papers

The pathological role of the ubiquitination pathway in diabetic nephropathy.

Minerva Medica 2018 Februrary
Diabetic nephropathy (DN) is a chronic complication of type 2 diabetes and is the most frequent form of chronic kidney disease that can lead to end-stage renal disease. Different pathways, involved in oxidative stress, inflammation, fibrosis and cell death, are responsible for the pathogenesis of DN and regulate the progression of the disease. Ubiquitination is a fundamental pathway in intracellular signaling whose role is emerging in the regulation of molecular processes responsible for several human diseases. Among the conventional ubiquitination pathway, leading to proteasomal degradation of proteins, also non-conventional ubiquitination plays an important role in the regulation of intracellular signaling. Several proteasome inhibitors have been developed and tested both in humans and in animal models and show potential as promising therapeutic approaches. In this review, we focused our attention on the role of ubiquitination pathway in the principal processes involved in the pathogenesis and progression of DN.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app