Add like
Add dislike
Add to saved papers

Thermo-rheological responsive microcapsules for time-dependent controlled release of human mesenchymal stromal cells.

Biomaterials Science 2017 October 25
Human mesenchymal stromal cells (hMSCs) are adult-source cells that have been extensively evaluated for cell-based therapies. hMSCs delivered by intravascular injection have been reported to accumulate at the sites of injury to promote tissue repair and can also be employed as vectors for the delivery of therapeutic genes. However, the full potential of hMSCs remains limited as the cells are lost after injection due to anoikis and the adverse pathologic environment. Encapsulation of cells has been proposed as a means of increasing cell viability. However, controlling the release of therapeutic cells over time to target tissue still remains a challenge today. Here, we report the design and development of thermo-rheological responsive hydrogels that allow for precise, time dependent controlled-release of hMSCs. The encapsulated hMSCs retained good viability from 76% to 87% dependent upon the hydrogel compositions. We demonstrated the design of different blended hydrogel composites with modulated strength (S parameter) and looseness of hydrogel networks (N parameter) to control the release of hMSCs from thermo-responsive hydrogel capsules. We further showed the feasibility for controlled-release of encapsulated hMSCs within 3D matrix scaffolds. We reported for the first time by a systematic analysis that there is a direct correlation between the thermo-rheological properties associated with the degradation of the hydrogel composite and the cell release kinetics. This work therefore provides new insights into the further development of smart carrier systems for stem cell therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app