Add like
Add dislike
Add to saved papers

Relationship of Grammatical Context on Children's Recognition of s/z-Inflected Words.

BACKGROUND: Access to aided high-frequency speech information is currently assessed behaviorally using recognition of plural monosyllabic words. Because of semantic and grammatical cues that support word+morpheme recognition in sentence materials, the contribution of high-frequency audibility to sentence recognition is less than that for isolated words. However, young children may not yet have the linguistic competence to take advantage of these cues. A low-predictability sentence recognition task that controls for language ability could be used to assess the impact of high-frequency audibility in a context that more closely represents how children learn language.

PURPOSE: To determine if differences exist in recognition of s/z-inflected monosyllabic words for children with normal hearing (CNH) and children who are hard of hearing (CHH) across stimuli context (presented in isolation versus embedded medially within a sentence that has low semantic and syntactic predictability) and varying levels of high-frequency audibility (4- and 8-kHz low-pass filtered for CNH and 8-kHz low-pass filtered for CHH).

RESEARCH DESIGN: A prospective, cross-sectional design was used to analyze word+morpheme recognition in noise for stimuli varying in grammatical context and high-frequency audibility. Low-predictability sentence stimuli were created so that the target word+morpheme could not be predicted by semantic or syntactic cues. Electroacoustic measures of aided access to high-frequency speech sounds were used to predict individual differences in recognition for CHH.

STUDY SAMPLE: Thirty-five children, aged 5-12 yrs, were recruited to participate in the study; 24 CNH and 11 CHH (bilateral mild to severe hearing loss) who wore hearing aids (HAs). All children were native speakers of English.

DATA COLLECTION AND ANALYSIS: Monosyllabic word+morpheme recognition was measured in isolated and sentence-embedded conditions at a +10 dB signal-to-noise ratio using steady state, speech-shaped noise. Real-ear probe microphone measures of HAs were obtained for CHH. To assess the effects of high-frequency audibility on word+morpheme recognition for CNH, a repeated-measures ANOVA was used with bandwidth (8 kHz, 4 kHz) and context (isolated, sentence embedded) as within-subjects factors. To compare recognition between CNH and CHH, a mixed-model ANOVA was completed with context (isolated, sentence-embedded) as a within-subjects factor and hearing status as a between-subjects factor. Bivariate correlations between word+morpheme recognition scores and electroacoustic measures of high-frequency audibility were used to assess which measures might be sensitive to differences in perception for CHH.

RESULTS: When high-frequency audibility was maximized, CNH and CHH had better word+morpheme recognition in the isolated condition compared with sentence-embedded. When high-frequency audibility was limited, CNH had better word+morpheme recognition in the sentence-embedded condition compared with the isolated condition. CHH whose HAs had greater high-frequency speech bandwidth, as measured by the maximum audible frequency, had better word+morpheme recognition in sentences.

CONCLUSIONS: High-frequency audibility supports word+morpheme recognition within low-predictability sentences for both CNH and CHH. Maximum audible frequency can be used to estimate word+morpheme recognition for CHH. Low-predictability sentences that do not contain semantic or grammatical context may be of clinical use in estimating children's use of high-frequency audibility in a manner that approximates how they learn language.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app