Add like
Add dislike
Add to saved papers

Tracking Water Sorption in Glassy Aerosol Particles using Morphology-Dependent Resonances.

Morphology-dependent resonances (MDRs) can serve as a sensitive probe of the size and composition of microspheres. While the utilization of MDRs to characterize homogeneous spheres is now routine, analysis of spherical particles with more complicated refractive index profiles can be extremely difficult and time consuming. In ultraviscous and glassy aerosol particles, the concentration profile of water during sorption often contains a sharp front that propagates from the particle surface to the particle center over time. Here we show that the MDR positions associated with this type of concentration profile closely match those of a spherical core-shell profile. Due to the similarities, a core-shell model can be used to simplify the analysis of MDR positions that are observed during water uptake by high-viscosity aerosol particles. We examined the applicability and limitations of this core-shell model in the tracking of water sorption by single particles. Overall, the core-shell model allows for the radial position of a sharp diffusion front to be readily found using MDR positions observed during water sorption, making the analysis of light-scattering measurements much faster and less error prone than previously used fitting schemes. Additionally, methods for calculating MDRs in spherical core-shell particles are also discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app