Add like
Add dislike
Add to saved papers

Application of phase rotation to STRESS localization scheme at 3 T.

PURPOSE: Application of phase rotation to the STRESS (=STEAM+PRESS) localization scheme, to shorten echo time, minimize J-coupling dephasing and estimate B1+ inhomogeneity. STRESS (=STEAM + PRESS) simultaneously refocuses and acquires the double spin echo (SE123 ) and stimulated echo (STE- ) pathways, combining PRESS-like signal with lower chemical shift displacement as in STEAM. Phase rotation effectively separates coherence pathways, allows reduction of spoiling gradients moments leading to reduction in echo time. Implementing it in STRESS allows one to individually phase-correct SE123 and STE- prior to combination. Moreover, B1+ inhomogeneity can be assessed by comparing the measured ratio of resonance intensities of SE123 and STE- pathways to the simulated one.

METHODS: In vivo spectra were acquired from a single voxel placed in the sensory-motor cortex of 10 healthy volunteers, using phase rotation-STRESS/PRESS/STEAM sequences at 3 T scanner. The phases of each slice-selective pulse were incremented by Δϕ1/2/3=22.5°/-45°/45°.

RESULTS: Phase rotation-STRESS showed quantification accuracy (% Cramer Rao lower bounds) and reproducibility (% coefficients of variation) comparable to PRESS and STEAM, in both phantoms and in vivo study. Minimal echo time achieved was 13 ms.

CONCLUSION: Phase rotation complements STRESS by reducing echo time, allowing processing of each pathway individually prior to addition and providing B1+ estimation in single voxel proton magnetic resonance spectroscopy. Magn Reson Med 79:2481-2490, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app