Add like
Add dislike
Add to saved papers

Quantum capacitance as a reagentless molecular sensing element.

Nanoscale 2017 October 20
The application of nanoscale capacitance as a transduction of molecular recognition relevant to molecular diagnostics is demonstrated. The energy-related signal relates directly to the electron occupation of quantized states present in readily fabricated molecular junctions such as those presented by redox switchable self-assembled molecular monolayers, reduced graphene oxide or redox-active graphene composite films, assembled on standard metallic or micro-fabricated electrodes. Sensor design is thus based on the response of a confined and resolved electronic density of states to target binding and the associated change in interfacial chemical potential. Demonstrated herein with a number of clinically important markers, this represents a new potent and ultrasensitive molecular detection enabling energy transducer principle capable of quantifying, in a single step and reagentless manner, markers within biological fluid.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app