Add like
Add dislike
Add to saved papers

Unique Interactome Network Signatures for Peroxisome Proliferator-activated Receptor Gamma (PPARγ) Modulation by Functional Selective Ligands.

The nuclear receptor PPARγ regulates adipogenesis and plays a central role in lipid and glucose homeostasis, and is the molecular target of the glitazones (TZDs), therapeutics used to treat insulin resistance and type-2 diabetes (T2D). Although the TZDs, which are PPARγ agonists, demonstrated robust clinical efficacy in T2D, their use has been hampered by an array of untoward side effects. Paradoxically, partial agonists ( e.g. MRL24), antagonists ( e.g. SR1664), and inverse agonists ( e.g. SR10171 and SR2595), possess similar insulin-sensitizing efficacy as the TZDs in obese diabetic mice. Given the unique pharmacology of these modulators, we sought to identify the components of the PPARγ transcriptional complex that is regulated by these ligands. To achieve this, we employed subcellular fractionation of adipocytes combined with either trapping of the receptor complex on biotinylated DNA oligonucleotide, or classical immunoprecipitation. Tandem mass spectrometry analysis revealed unique, partially overlapping, compound- and subcellular compartment-specific complexes. Components of these interactomes are putative coregulators of PPARγ. Interestingly, complexes isolated in the cytosol contain sets of proteins involve in cellular assembly and extracellular matrix. Furthermore, the interactome observed for cytosolic non-DNA bound receptor was distinct from that observed from nuclear chromatin associated PPARγ, suggesting cellular compartment-specific roles for this receptor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app