Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Functional Characterization of CTX-M-14 and CTX-M-15 β-Lactamases by In Vitro DNA Shuffling.

This work investigated the molecular events driving the evolution of the CTX-M-type β-lactamases by the use of DNA shuffling of fragments of the bla CTX-M-14 and bla CTX-M-15 genes. Analysis of a total of 51 hybrid enzymes showed that enzymatic activity could be maintained in most cases, yet hybrids that were active possessed fewer amino acid substitutions than those that were inactive, suggesting that point mutations in the constructs rather than reshuffling of the fragments of the two target genes would more likely cause disruption of CTX-M activity. For example, the P67 L and L261 P changes in a CTX-M-14 fragment could completely abolish the activity of the enzyme on all antibiotics tested. Structural analysis showed that L216 was located in the active-site β sheet and might interact with the adjacent hydrophobic residues to stabilize the active-site β sheet and maintain the integrity of the enzyme active site. Likewise, a single amino acid substitution, E64 K, was found to exhibit a significant suppressive effect on CTX-M-15 activity. Structural analysis showed that E64 might form a salt bridge with R44 , disruption of which might affect CTX-M-15 activity. Further analysis of the structure-function relationship of a range of mutant enzymes confirmed that, as can be expected, unstable enzymes lose their activity and avoid selective events. These findings suggest that the distal pockets could also contribute to the activity of the enzymes and may be regarded as alternative targets for inhibitor development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app