Add like
Add dislike
Add to saved papers

Spontaneous Neuronal Network Persistent Activity in the Neocortex: A(n) (Endo)phenotype of Brain (Patho)physiology.

Abnormal synaptic homeostasis in the cerebral cortex represents a risk factor for both psychiatric and neurodegenerative disorders, from autism and schizophrenia to Alzheimer's disease. Neurons via synapses form recurrent networks that are intrinsically active in the form of oscillating activity, visible at increasingly macroscopic neurophysiological levels: from single cell recordings to the local field potentials (LFPs) to the clinically relevant electroencephalography (EEG). Understanding in animal models the defects at the level of neural circuits is important in order to link molecular and cellular phenotypes with behavioral phenotypes of neurodevelopmental and/or neurodegenerative brain disorders. In this study we introduce the novel idea that recurring persistent network activity (Up states) in the neocortex at the reduced level of the brain slice may be used as an endophenotype of brain disorders that will help us understand not only how local microcircuits of the cortex may be affected in brain diseases, but also when, since an important issue for the design of successful treatment strategies concerns the time window available for intervention.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app