JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

HOXB4 Immunoreactivity in Endometrial Tissues From Women With or Without Endometriosis.

Endometriosis is a common disease characterized by the presence of ectopic endometrial tissue. Although the pathogenesis of endometriosis remains unclear, several factors have been implicated, including the dysregulation of homeobox ( HOX) genes. Our objective was to investigate the localization and immunoreactivity of HOXB4 in endometrial tissues from women with or without endometriosis. We studied samples of eutopic endometrium (EE), endometriomas (Eoma), superficial endometriosis (SE), and deep infiltrating endometriosis (DIE) from 34 women with endometriosis, as well as eutopic endometrium from 38 women without endometriosis (EC). HOXB4 localization and immunoreactivity was assessed using immunohistochemistry and histoscore analysis. Data were analyzed with and without stratification by menstrual cycle phase. HOXB4 protein was present in the nuclei of endometrial glandular epithelial cells but not in stromal cells. HOXB4 immunoreactivity was reduced in DIE samples compared to all other groups. A smaller reduction in HOXB4 immunoreactivity was observed in SE samples compared to EC samples. HOXB4 immunoreactivity was significantly greater in proliferative compared to secretory phase samples in the EC group but not in EE, Eoma, or DIE groups. Among only proliferative phase samples, HOXB4 immunoreactivity was reduced in EE, Eoma, and DIE groups compared to EC. Based on these data, we suggest that an impaired capacity of eutopic and ectopic endometrial tissue to upregulate levels of HOXB4 during the proliferative phase may play a role in the pathogenesis of endometriosis and that further downregulation of HOXB4 may enhance ectopic implant invasiveness.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app