Add like
Add dislike
Add to saved papers

Storage Medium Affects the Surface Porosity of Dental Cements.

INTRODUCTION: Calcium silicate-based cements physical properties is influenced by environmental changes.

AIM: Here, we intended to evaluate the effect of storage medium on surface porosity of root Mineral Trioxide Aggregate (MTA) and Biodentine cement.

MATERIALS AND METHODS: A total of 40 polyethylene tubes were selected and divided into two groups: Group A (MTA) and Group B (Biodentine). Each group was subdivided into two subgroups (n=10). In subgroups A1 and B1, tubes were transferred to Distilled Water (DW), while samples of subgroup A2 and B2 were transferred to Synthetic Tissue Fluid (STF) as storage medium and samples were stored for three days. All specimens were then placed in a desiccator for 24 hours and then subject to surface porosity evaluation by Scanning Electron Microscopy (SEM) at ×500, ×1000, ×2000 and ×5000 magnifications. The number and the surface porosities were determined by Image J analysis. Data were analyzed by ANOVA at level of significance of p<0.05.

RESULTS: The lowest surface porosity was observed in MTA samples stored in STF and the highest was in Biodentine samples stored in DW. Significant differences were noted between groups and subgroups of each group (p< 0.05). MTA samples stored in DW and STF showed significantly lower surface porosities compared to Biodentine samples (p < 0.05).

CONCLUSION: Storage medium can drastically affect the surface porosity of tested calcium silicate-based cements. However, MTA showed lower surface porosity compared to Biodentine cement, which can result in lower microleakage in applied area.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app