Add like
Add dislike
Add to saved papers

Targeting the tumor-promoting microenvironment in MET-amplified NSCLC cells with a novel inhibitor of pro-HGF activation.

Oncotarget 2017 September 9
Targeted therapeutic agents, such as inhibitors of epithelial growth factor receptor (EGFR), have transformed the management of non-small cell lung cancer (NSCLC) patients. MET-amplified NSCLC cells display resistance to EGFR-targeting agents, but are addicted to MET signaling for survival and proliferation and are sensitive to MET inhibition. However, responsive cancer cells invariably develop resistance to MET-targeted treatment. The tumor microenvironment plays a major role in resistance to anticancer therapy. We demonstrated that fibroblasts block the response of MET-amplified NSCLC cells to the MET kinase inhibitor, JNJ38877605 in an HGF-dependent manner. Thus, MET-amplified NSCLC cells become addicted to HGF upon pharmacological inhibition of MET. HGF restored phosphorylation of MET, EGFR and RON, and maintained pro-survival AKT and ERK signaling in MET-inhibited cells. We developed a small molecule inhibitor of pro-HGF activation, SRI31215, which acts as a triplex inhibitor of the pro-HGF activating proteases matriptase, hepsin and HGF activator (HGFA). SRI31215 blocked crosstalk between tumor cells and fibroblasts and overcame fibroblast-mediated resistance to MET inhibition by preventing fibroblast-mediated reactivation of AKT and ERK signaling. Structurally unrelated triplex inhibitors of matriptase, hepsin and HGFA that we developed in parallel showed similar biological activity. Our data suggest that simultaneous inhibition of HGF and MET is required to overcome resistance to MET inhibitors in MET-amplified NSCLC cells. This provides a rationale for the development of novel combination therapeutic strategies for the treatment of NSCLC patients with MET amplification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app