Add like
Add dislike
Add to saved papers

Spatial pattern of atmospherically deposited radiocesium on the forest floor in the early phase of the Fukushima Daiichi Nuclear Power Plant accident.

Spatial patterns of atmospherically deposited radiocesium on the forest floor and the temporal evolution were measured in two Japanese cedar stands and a secondary mixed broad-leaved forest in the early phase of the Fukushima Daiichi Nuclear Power Plant accident. In situ measurements of the 137 Cs gamma count were made using a portable germanium gamma ray detector. These measurements revealed that the forest floors were contaminated with radionuclides derived from the accident. In the cedar stands, the inter-canopy area had higher 137 Cs count rate relative to the under-canopy area, whereas no clear relationship was found between the radiocesium pattern and canopy cover in the mixed broad-leaved forest. Repeated radiocesium measurements revealed that the spatial pattern of radiocesium activity on the forest floor did not substantially change following additional deposition inputs. Furthermore, the magnitude of canopy cover partially explained spatial variability of the 137 Cs on the forest floor in cedar stands. These results suggest that canopy structure affected the genesis of the horizontal variability of atmospherically deposited radiocesium on the forest floor during the early phase of the Fukushima accident.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app