Add like
Add dislike
Add to saved papers

Dispersive Optical Activity of (R)-Methylene Norbornene: Intrinsic Response and Solvation Effects.

The dispersive optical activity of a homoconjugated bicyclic diene, (R)-methylene norbornene (R-MNB), was interrogated under complementary vapor-phase and solution-phase conditions to elucidate the structural/electronic provenance of its unusual chiroptical signatures and to explore the marked influence of environmental perturbations. The intrinsic (isolated-molecule) values of specific rotation measured at 355 and 633 nm (1623.5 ± 5.5 and 390.4 ± 3.7 deg dm-1 (g/mL)-1 ) were found to be factors of 3.9 and 2.1 smaller in magnitude than analogous quantities obtained for the kindred enone, (R)-norbornenone (R-NBO), reflecting, in part, the loss of prominent magnetic-dipole contributions from the C═O moiety and the exclusion of electron delocalization from the oxygen lone pairs. The wavelength-resolved rotatory powers of R-MNB were enhanced dramatically (by ∼40% on average) upon dissolution in any of the four common solvents targeted by the present study (acetonitrile, di-n-butylether, cyclohexane, and chloroform), yet displayed only a slight dependence on the exact nature of the surrounding liquid (±2.7% variation from the mean at 589.3 nm). Quantum-chemical calculations built upon the linear-response frameworks of density-functional theory and coupled-cluster theory were enlisted to interpret experimental results, with the substantial effects incurred by nonspecific solvation phenomena being explored through use of polarizable continuum models and bulk property-response relationships. Aside from enumerating the varied quality of agreement attained between computational predictions and polarimetric measurements, these efforts have found that refractive-index correlations, akin to those embodied in the venerable (albeit often discounted) Lorentz local-field correction, afford a viable means of linking the chiroptical behavior of R-MNB across phases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app