Add like
Add dislike
Add to saved papers

Differential expression of microRNAs in TM3 Leydig cells of mice treated with brain-derived neurotrophic factor.

Brain-derived neurotrophic factor (BDNF) is a neurotrophin that can promote the development and proliferation of neurons. BDNF has been found to be involved in male reproduction. Leydig cells in testicular interstitial tissues can secrete testosterone in a luteinizing hormone-dependent manner. We showed that BDNF and its receptor TrkB were expressed in mice TM3 Leydig cells in the present study. Furthermore, BDNF can promote proliferation of mouse TM3 Leydig cells in vitro. Results of microRNA (miRNA) deep sequencing showed that BDNF can alter the expression profile of miRNAs in TM3 Leydig cells. Eighty-three miRNAs were significantly different in the BDNF-treated and control groups (fold change of >2.0 or <0.5, P < 0.05) wherein 40 were upregulated and 43 were downregulated. The expression levels of miR-125a-5p, miR-22-5p, miR-342-59, miR-451a, miR-148a-5p, miR-29b-3p, miR-199b-5p, and miR-145a-5p were further confirmed by quantitative real-time polymerase chain reaction. Bioinformatic analysis revealed that miRNAs regulated a large number of genes with different functions. Pathway analysis indicated that miRNAs participate in the pathways involved in signal transduction, cancer, metabolism, endocrine system, immune system, and nerve system. This study indicated that miRNAs might be involved in the BDNF-regulated cellular functions of Leydig cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app