Add like
Add dislike
Add to saved papers

Two CYP716A subfamily cytochrome P450 monooxygenases of sweet basil play similar but nonredundant roles in ursane- and oleanane-type pentacyclic triterpene biosynthesis.

New Phytologist 2017 April
The medicinal plant sweet basil (Ocimum basilicum) accumulates bioactive ursane- and oleanane-type pentacyclic triterpenes (PCTs), ursolic acid and oleanolic acid, respectively, in a spatio-temporal manner; however, the biosynthetic enzymes and their contributions towards PCT biosynthesis remain to be elucidated. Two CYP716A subfamily cytochrome P450 monooxygenases (CYP716A252 and CYP716A253) are identified from a methyl jasmonate-responsive expression sequence tag collection and functionally characterized, employing yeast (Saccharomyces cerevisiae) expression platform and adapting virus-induced gene silencing (VIGS) in sweet basil. CYP716A252 and CYP716A253 catalyzed sequential three-step oxidation at the C-28 position of α-amyrin and β-amyrin to produce ursolic acid and oleanolic acid, respectively. Although CYP716A253 was more efficient than CYP716A252 for amyrin C-28 oxidation in yeast, VIGS revealed essential roles for both of these CYP716As in constitutive biosynthesis of ursolic acid and oleanolic acid in sweet basil leaves. However, CYP716A253 played a major role in elicitor-induced biosynthesis of ursolic acid and oleanolic acid. Overall, the results suggest similar as well as distinct roles of CYP716A252 and CYP716A253 for the spatio-temporal biosynthesis of PCTs. CYP716A252 and CYP716A253 might be useful for the alternative and sustainable production of PCTs in microbial host, besides increasing plant metabolite content through genetic modification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app