Add like
Add dislike
Add to saved papers

Aluminium nanopillars reduce thermal conductivity of silicon nanobeams.

Nanoscale 2017 October 13
In search of efficient thermoelectric nanostructures, many theoretical works predicted that nanopillars, placed on the surface of silicon membranes, nanobeams, or nanowires, can reduce the thermal conductivity of these nanostructures. To verify these predictions, we experimentally investigate heat conduction in suspended silicon nanobeams with periodic arrays of aluminium nanopillars. Our room temperature time-domain thermoreflectance experiments show that the nanobeams with nanopillars have 20% lower thermal conductivity as compared to pristine nanobeams. We discuss possible explanations of these data, including coherent effects, and conclude that the thermal conductivity is reduced mainly by phonon scattering at the pillar/beam interface due to the intermixing of aluminium and silicon atoms, as supported by the transmission electron microscopy. As this intermixing does not only reduce thermal conductivity but may also increase electrical conductivity, these nanostructures are exceptionally promising for thermoelectric applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app