Add like
Add dislike
Add to saved papers

Cationic Acrylate Oligomers Comprising Amino Acid Mimic Moieties Demonstrate Improved Antibacterial Killing Efficiency.

Cu(0)-mediated polymerization was employed to synthesize a library of structurally varied cationic polymers and their application as antibacterial peptide mimics was assessed. Eight platform polymers were first synthesized with low degrees of polymerization (DP) using (2-Boc-amino)ethyl acrylate as the monomer and either ethyl α-bromoisobutyrate or dodecyl 2-bromoisobutyrate as the initiator (thus providing hydrocarbon chain termini of C2 or C12 , respectively). A two-step modification strategy was then employed to generate the final sixteen-member polymer library. Specifically, an initial deprotection was employed to reveal the primary amine cationic polymers, followed by guanylation. The biocidal activity of these cationic polymers was assessed against various strains of Escherichia coli , Klebsiella pneumoniae , Acinetobacter baumannii , Pseudomonas aeruginosa , Staphylococcus aureus , and Streptococcus pneumoniae . Polymers having a short segment of guanidine units and a C12 hydrophobic terminus were shown to provide the broadest antimicrobial activity against the panel of isolates studied, with MIC values approaching those for Gram-positive targeting antibacterial peptides: daptomycin and vancomycin. The C12 -terminated guanidine functional polymers were assayed against human red blood cells, and a concomitant increase in haemolysis was observed with decreasing DP. Cytotoxicity was tested against HEK293 and HepG2 cells, with the lowest DP C12 -terminated polymer exhibiting minimal toxicity over the concentrations examined, except at the highest concentration. Membrane disruption was identified as the most probable mechanism of bacteria cell killing, as elucidated by membrane permeability testing against E. coli .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app