Add like
Add dislike
Add to saved papers

MicroRNA-186 regulates the invasion and metastasis of bladder cancer via vascular endothelial growth factor C.

The present study aimed to investigate the expression of microRNA (miRNA or miR)-186 in tumor tissue, blood and urine from patients with bladder cancer. The mechanism by which miR-186 regulates the invasion and metastasis of bladder cancer was also assessed. A total of 76 patients who underwent surgical resection of bladder cancer tissues between August 2012 and January 2016 were included in the present study. Blood and urine samples were also collected from the 76 patients and another 66 healthy subjects. Expression of vascular endothelial growth factor C (VEGF-C) mRNA and miR-186 was measured using reverse transcription-quantitative polymerase chain reaction. Western blot analysis was performed to assess VEGF-C protein expression in tumor tissues. The content of VEGF-C protein in blood and urine samples was measured using an enzyme-linked immunosorbent assay. To identify the direct interaction between miR-186 and VEGF-C mRNA, a dual luciferase reporter assay was performed. The present findings demonstrated that VEGF-C mRNA expression in tumor tissues, blood and urine of bladder cancer patients was upregulated. VEGF-C protein expression in bladder cancer tissues was also enhanced. VEGF-C protein content in blood and urine from bladder cancer patients was elevated, consistent with the results for VEGF-C mRNA. Expression of miR-186 was reduced in tumor tissues, blood and urine. Dual luciferase reporter assay demonstrated that miR-186 regulated the expression of VEGF-C by binding with its 3'-untranslated region. Therefore, the results of the present study indicate that the expression of VEGF-C mRNA and protein is upregulated in tumor tissues, blood and urine from patients with bladder cancer, while that of miR-186 is downregulated in these samples. miR-186 potentially regulates the invasion and metastasis of bladder cancer via VEGF-C, and may become a gene marker for bladder cancer in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app