Add like
Add dislike
Add to saved papers

Estimating daily PM2.5 and PM10 across the complex geo-climate region of Israel using MAIAC satellite-based AOD data.

Estimates of exposure to PM2.5 are often derived from geographic characteristics based on land-use regression or from a limited number of fixed ground monitors. Remote sensing advances have integrated these approaches with satellite-based measures of aerosol optical depth (AOD), which is spatially and temporally resolved, allowing greater coverage for PM2.5 estimations. Israel is situated in a complex geo-climatic region with contrasting geographic and weather patterns, including both dark and bright surfaces within a relatively small area. Our goal was to examine the use of MODIS-based MAIAC data in Israel, and to explore the reliability of predicted PM2.5 and PM10 at a high spatiotemporal resolution. We applied a three stage process, including a daily calibration method based on a mixed effects model, to predict ground PM2.5 and PM10 over Israel. We later constructed daily predictions across Israel for 2003-2013 using spatial and temporal smoothing, to estimate AOD when satellite data were missing. Good model performance was achieved, with out-of-sample cross validation R(2) values of 0.79 and 0.72 for PM10 and PM2.5, respectively. Model predictions had little bias, with cross-validated slopes (predicted vs. observed) of 0.99 for both the PM2.5 and PM10 models. To our knowledge, this is the first study that utilizes high resolution 1km MAIAC AOD retrievals for PM prediction while accounting for geo-climate complexities, such as experienced in Israel. This novel model allowed the reconstruction of long- and short-term spatially resolved exposure to PM2.5 and PM10 in Israel, which could be used in the future for epidemiological studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app