Add like
Add dislike
Add to saved papers

Recombinant Human Serum Albumin Containing 3 Copies of Domain I, Has Significant in Vitro Antioxidative Capacity Compared to the Wild-Type.

Human serum albumin (HSA), the most abundant protein in serum, functions as carrier of drugs and contributes to maintaining serum colloid osmotic pressure. We report herein on the preparation of a genetic recombinant HSA, in which domains II and III were changed to domain I (triple domain I; TDI). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results indicated that the purity of the TDI was equivalent to that of the wild type (WT). Both far- and near-UV circular dichroism (CD) spectra of the TDI showed that its structural characteristics were similar to the WT. Ligand binding capacity was examined by an ultrafiltration method using 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) and ketoprofen as markers for site I and site II, respectively. The binding capacity of TDI for both ligands was lower than that for the wild type. TDI significantly suppressed the oxidation of dihydrorhodamine 123 (DRD) by H2 O2 compared to the WT. Our current results suggest that TDI has great potential for further development as HSA a product having antioxidative functions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app