Add like
Add dislike
Add to saved papers

The transition from water to air in aeshnid dragonflies is associated with a change in ventilatory responses to hypoxia and hypercapnia.

Dragonflies are amphibiotic, spending most of their lives as aquatic nymphs before metamorphosing into terrestrial, winged imagoes. Both the nymph and the adult use rhythmic abdominal pumping movements to ventilate their gas exchange systems: the nymph tidally ventilates its rectal gill with water, while the imago pumps air into its tracheal system through its abdominal spiracles. The transition from water to air is known to be associated with changes in both respiratory chemosensitivity and ventilatory control in vertebrates and crustaceans, but the changes experienced by amphibiotic insects have been poorly explored. In this study, dragonfly nymphs (Anax junius) and imagoes (Anax junius and Aeshna multicolor) were exposed to hypoxia and hypercapnia while their abdominal ventilation frequency and amplitude was recorded. Water-breathing nymphs showed a significant increase in abdominal pumping frequency when breathing hypoxic water (<10 kPa O2 ), but no strong response to CO2 , even in severe hypercapnia (up to 10 kPa CO2 ). In contrast, both species of air-breathing imago increased their abdominal pumping amplitude when exposed to either hypoxia or hypercapnia, but did not show any significant increase in frequency. These results demonstrate that aquatic dragonfly nymphs possess a respiratory sensitivity that is more like other water breathing animals, being sensitive to hypoxia but not hypercapnia, while their air-breathing adult form responds to both respiratory challenges, like other terrestrial insects. Shifting from ventilating a rectal gill with water to ventilating a tracheal system with air is also associated with a change in how abdominal ventilation is controlled; nymphs regulate gas exchange by varying frequency while imagoes respond by varying amplitude.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app