Add like
Add dislike
Add to saved papers

Effects of binary metal combinations on zinc, copper, cadmium and lead uptake and distribution in Brassica juncea.

The interaction between lead, copper, cadmium and zinc in their binary combinations was investigated in Indian mustard seedlings (Brassica juncea L. var. Malopolska). Fourteen-days-old seedlings were treated with Pb(NO3 )2 , CuSO4 , CdCl2 , ZnSO4 at 50μmol of metal ion concentration and at 25μmol of each metal ion in combinations. Metal combinations were generally more inhibiting in terms of biomass production. This inhibiting effect followed an order: Cu+Cd>Cu+Zn, Cd+Pb>Cu+Pb>Zn+Pb, Cu>Cd>Zn>Zn+Cd>Pb. We observed synergistic and antagonistic effects of metal uptake in binary metal treatments, suggesting metal crosstalk at the plant uptake site. Metal content in plant tissues varied among different combinations. The metal concentrations followed an order of Pb>Cu>Zn>Cd in roots, Zn>Cu>Pb>Cd in the stem and Zn>Cu>Cd>Pb in leaves. Presence of metals altered the distribution of micronutrients (Cu, Zn) in plants: Cu concentration was lowered in roots and leaves and increased in stems; Zn content was increased in plants, with stems having up to 4 or 5 times more Zn than in control plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app