Add like
Add dislike
Add to saved papers

NGR-modified pH-sensitive liposomes for controlled release and tumor target delivery of docetaxel.

As current tumor chemotherapy faces many challenges, it is important to develop drug delivery systems with increased tumor-targeting ability, enhanced therapeutic effects and reduced side effects. In this study, a pH-sensitive liposome was constructed containing CHEMS-anchored PEG2000 for extended circulation and NGR peptide as the targeting moiety. The NGR-modified docetaxel-loaded pH-sensitive extended-circulation liposomes (DTX/NGR-PLL) prepared possess suitable physiochemical properties, including particle size of approximately 200nm, drug encapsulation efficiency of approximately 70%, and pH-sensitive drug release properties. Experiments performed in vitro and in vivo on human fibrosarcoma cells (HT-1080) and human breast adenocarcinoma cells (MCF-7) verified the specific targeting ability and enhanced antitumor activity to HT-1080 cells. The results of intravenous administration demonstrated that NGR-modified liposomes can significantly and safely accumulate in tumor tissue in xenografted nude mice. In conclusion, the liposomes constructed hold promise as a safe and efficient drug delivery system for specific tumor treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app