Add like
Add dislike
Add to saved papers

Natural isoflavone biochanin A as a template for the design of new and potent 3-phenylquinolone efflux inhibitors against Mycobacterium avium.

Mycobacterium avium is a difficult-to-treat pathogen able to quickly develop drug resistance. Like for other microbial species, overexpression of efflux pumps is one of the main mechanisms in developing multidrug resistance. Although the use of efflux pumps inhibitors (EPIs) represents a promising strategy to reverse resistance, to date few M. avium EPIs are known. Recently, we showed that in-house 2-phenylquinoline S. aureus NorA EPIs exhibited also a good activity against M. avium efflux pumps. Herein, we report a series of 3-phenylquinolones designed by modifying the isoflavone biochanin A, a natural EPI of the related M. smegmatis, taking into account some important SAR information obtained around the 2-phenylquinoline NorA EPIs. The 3-phenylquinolones inhibited M. avium efflux pumps with derivatives 1e and 1g that displayed the highest synergistic activity against all the strains considered in the study, bringing down (from 4- to 128-fold reduction) the MIC values of macrolides and fluoroquinolones.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app