Add like
Add dislike
Add to saved papers

Measurement of GPCR-G protein activity in living cells.

G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors in eukaryotic genomes. They control a variety of cellular and physiological processes such as hormone secretion and heart rate, and therefore are associated with a majority of pathological conditions including cancer and heart diseases. Currently established assays to measure ligand-induced activation of GPCRs and G proteins possess limitations such as being time consuming, indirect, and expensive. Thus, an efficient method to measure GPCR-G protein activation is required to identify novel pharmacological modulators to control them and gain insights about molecular underpinnings of the associated pathways. Activation of GPCRs induces dissociation of G protein heterotrimers to form GαGTP and free Gβγ. Free Gβγ subunits have been shown to translocate reversibly from the plasma membrane to internal membranes. Gβγ translocation therefore represents the GPCR-G protein activation, and thus, imaging of this process can be used to quantify the kinetics and magnitude of the pathway activation-deactivation in real time in living cells. The objective of this chapter is to elaborate the protocols of (i) generation and optimization of the required sensor constructs; (ii) development of cell culture, transient transfection, imaging, and optogenetic procedures; (iii) imaging and data analysis methods; and (iv) stable cell line generation, pertaining to this assay to measure GPCR-G protein activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app