Add like
Add dislike
Add to saved papers

A mode-coupling theory analysis of the observed diffusion anomaly in aqueous polyatomic ions.

Journal of Chemical Physics 2017 September 29
In contrast to simple monatomic alkali and halide ions, complex polyatomic ions such as nitrate, acetate, nitrite, and chlorate have not been studied in any great detail. Experiments have shown that diffusion of polyatomic ions exhibits many remarkable anomalies; notable among them is the fact that polyatomic ions with similar size show large difference in their diffusivity values. This fact has drawn relatively little interest in scientific discussions. We show here that a mode-coupling theory can provide a physically meaningful interpretation of the anomalous diffusivity of polyatomic ions in water, by including the contribution of rotational jumps on translational friction. The two systems discussed here, namely, aqueous nitrate ion and aqueous acetate ion, although have similar ionic radii, exhibit largely different diffusivity values due to the differences in the rate of their rotational jump motions. We have further verified the mode-coupling theory formalism by comparing it with experimental and simulation results that agree well with the theoretical prediction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app