Add like
Add dislike
Add to saved papers

Overexpression of CsLEA11, a Y3SK2-type dehydrin gene from cucumber (Cucumis sativus), enhances tolerance to heat and cold in Escherichia coli.

AMB Express 2017 September 30
As the group II LEA (late embryogenesis abundant) proteins, dehydrins (DHNs) play an important role in plant growth and development, as well as in response to abiotic or biotic stress challenges. In this study, a DHN gene named CsLEA11 was identified and characterized from Cucumis sativus. Sequence analysis of CsLEA11 showed that it is a Y3SK2-type DHN protein rich in hydrophilic amino acids. Expression analyses revealed that the transcription of CsLEA11 could be significantly induced by heat and cold stress. The recombinant plasmid was transformed into Escherichia coli BL21 and isopropy-β-D-thiogalactoside (IPTG) was used to induce recombinant E. coli to express CsLEA11 gene. Overexpression of CsLEA11 in E. coli enhanced cell viability and conferred tolerance to heat and cold stress. Furthermore, CsLEA11 protein could protect the activity of lactate dehydrogenase (LDH) under heat stress. Taken together, our data demonstrate that CsLEA11 might function in tolerance of cucumber to heat and cold stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app